Products related to Oil:
-
Raman Scattering on Emerging Semiconductors and Oxides
Raman Scattering on Emerging Semiconductors and Oxides presents Raman scattering studies.It describes the key fundamental elements in applying Raman spectroscopies to various semiconductors and oxides without complicated and deep Raman theories. Across nine chapters, it covers:• SiC and IV-IV semiconductors,• III-GaN and nitride semiconductors,• III-V and II-VI semiconductors,• ZnO-based and GaO-based semiconducting oxides,• Graphene, ferroelectric oxides, and other emerging materials,• Wide-bandgap semiconductors of SiC, GaN, and ZnO, and• Ultra-wide gap semiconductors of AlN, Ga2O3, and graphene. Key achievements from the author and collaborators in the above fields are referred to and cited with typical Raman spectral graphs and analyses.Written for engineers, scientists, and academics, this comprehensive book will be fundamental for newcomers in Raman spectroscopy. Zhe Chuan Feng has had an impressive career spanning many years of important work in engineering and tech, including as a professor at the Graduate Institute of Photonics & Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei; establishing the Science Exploring Lab; joining Kennesaw State University as an adjunct professor, part-time; and at the Department of Electrical and Computer Engineering, Southern Polytechnic College of Engineering and Engineering Technology.Currently, he is focusing on materials research for LED, III-nitrides, SiC, ZnO, other semiconductors/oxides, and nanostructures and has devoted time to materials research and growth of III-V and II-VI compounds, LED, III nitrides, SiC, ZnO, GaO, and other semiconductors/oxides. Professor Feng has also edited and published multiple review books in his field, alongside authoring scientific journal papers and conference/proceeding papers.He has organized symposiums and been an invited speaker at different international conferences and universities.He has also served as a guest editor for special journal issues.
Price: 44.99 £ | Shipping*: 0.00 £ -
Nanotechnology in Enhanced Oil Recovery
The book presents an in-depth analysis of the various nanotechnologies that have been developed and their potential application in enhanced oil recovery (EOR).It begins with an introduction to EOR and the current state of the oil and gas industry followed by discussion of various nanoparticles used in EOR, including metal and metal oxide nanoparticles, carbon-based nanoparticles, and composite nanoparticles.It also explains the various mechanisms by which nanoparticles can enhance oil recovery, and challenges and limitations of using nanotechnology in EOR. Features:Provides comprehensive analysis of how nanoparticles affect enhanced Oil Recovery (EOR), practical application, and simulation. Explores stepwise information about the utility of nanotechnology in EORIncludes dedicated case study chapters to get in-depth idea of EOR by using nanotechnologyIllustrates various essential parameters affecting the EOR Discusses challenges of nanotechnology based EORThis book is aimed at graduate students, researchers, and professionals in Petroleum and Chemical Engineering, and Nanotechnology.
Price: 125.00 £ | Shipping*: 0.00 £ -
Applied Raman Spectroscopy : Concepts, Instrumentation, Chemometrics, and Life Science Applications
Applied Raman Spectroscopy: Concepts, Instrumentation, Chemometrics, and Life Science Applications synthesizes recent developments in the field, providing an updated overview.The book focuses on the modern concepts of Raman spectroscopy techniques, recent technological innovations, data analysis using chemometric methods, along with the latest examples of life science applications relevant in academia and industries.It will be beneficial to researchers from various branches of science and technology, and it will point them to modern techniques coupled with data analysis methods.In addition, it will help instruct new readers on Raman spectroscopy and hyphenated Raman spectroscopic techniques. The book is primarily written for analytical and physical chemistry students and researchers at a more advanced level who require a broad introductory overview of the applications of Raman spectroscopy, as well as those working in applied industry and clinical laboratories.Students, researchers, and industry workers in related fields, including X-ray and materials science, agriculture, botany, molecular biology and biotechnology, mineralogy, and environmental science will also find it very useful.
Price: 155.00 £ | Shipping*: 0.00 £ -
Magneto-Optics and Spectroscopy of Antiferromagnets
Certain magnetic materials have optical properties that make them attractive for a wide variety of applications such as optical switches.This book describes the physics of one class of such magnetooptic materials, the insulating antiferromagnets.The authors summarize recent results concerning the structure, optical properties, spectroscopy, and magnetooptical properties of these materials.In particular, they consider magnetic phase transitions, symmetry effects, the linear magnetooptical effect, magnons, spectroscopic study of spin waves, photoinduced magnetic effects, and the effects of impurities.
Price: 89.99 £ | Shipping*: 0.00 £
-
Which oil is better: castor oil or argan oil?
The choice between castor oil and argan oil depends on your specific needs. Castor oil is known for its moisturizing and conditioning properties, making it a great choice for promoting hair growth and treating dry scalp. On the other hand, argan oil is lighter and absorbs easily into the skin, making it a good option for hydrating and nourishing both hair and skin without leaving a greasy residue. Ultimately, the better oil for you will depend on your individual preferences and desired outcomes.
-
Instead of essential oil, soap oil, and fragrance oil?
Instead of essential oil, soap oil, and fragrance oil, you could consider using natural alternatives such as coconut oil, olive oil, or shea butter for their moisturizing properties. These ingredients can help nourish and hydrate the skin without the need for added fragrances or synthetic oils. Additionally, using natural oils can be more sustainable and environmentally friendly compared to their synthetic counterparts.
-
Which oil is better: castor oil or almond oil?
The choice between castor oil and almond oil depends on your specific needs. Castor oil is known for its moisturizing and anti-inflammatory properties, making it a good choice for dry and irritated skin. It is also commonly used for promoting hair growth. On the other hand, almond oil is rich in vitamins and antioxidants, making it a great option for improving overall skin health and reducing signs of aging. It is also lighter in texture and easily absorbed, making it suitable for all skin types. Ultimately, the better oil for you will depend on your individual skin and hair needs.
-
Instead of cooking oil, olive oil?
Yes, olive oil can be used as a healthier alternative to cooking oil. Olive oil is high in monounsaturated fats, which can help lower bad cholesterol levels and reduce the risk of heart disease. It also contains antioxidants and anti-inflammatory properties. When using olive oil for cooking, it's best to use it at lower temperatures to preserve its nutritional benefits.
Similar search terms for Oil:
-
Nanotechnology in Electronics : Materials, Properties, Devices
Nanotechnology in Electronics Enables readers to understand and apply state-of-the-art concepts surrounding modern nanotechnology in electronics Nanotechnology in Electronics summarizes numerous research accomplishments in the field, covering novel materials for electronic applications (such as graphene, nanowires, and carbon nanotubes) and modern nanoelectronic devices (such as biosensors, optoelectronic devices, flexible electronics, nanoscale batteries, and nanogenerators) that are used in many different fields (such as sensor technology, energy generation, data storage and biomedicine). Edited by four highly qualified researchers and professionals in the field, other specific sample topics covered in Nanotechnology in Electronics include: Graphene-based nanoelectronics biosensors, including the history, properties, and fundamentals of graphene, plus fundamentals of graphene derivatives and the synthesis of graphene Zinc oxide piezoelectronic nanogenerators for low frequency applications, with an introduction to zinc oxide and zinc oxide piezoelectric nanogenerators Investigation of the hot junctionless mosfets, including an overview of the junctionless paradigm and a simulation framework of the hot carrier degradation Conductive nanomaterials for printed/flexible electronics application and metal oxide semiconductors for non-invasive diagnosis of breast cancer The fundamental aspects and applications of multiferroic-based spintronic devices and quartz tuning fork based nanosensors. Containing in-depth information on the topic and written intentionally to help with the practical application of concepts described within, Nanotechnology in Electronics is a must-have reference for materials scientists, electronics engineers, and engineering scientists who wish to understand and harness the state of the art in the field.
Price: 159.00 £ | Shipping*: 0.00 £ -
A Milliliter-Scale Setup for the Efficient Characterization of Multicomponent Vapor-Liquid Equilibria Using Raman Spectroscopy
Vapor-liquid equilibrium (VLE) data are of major importance for the chemical industry.Despite significant progress in predictive methods, experimental VLE data are still indispensable.In this work, we address the need for experimental VLE data.Commonly, the characterization of VLE requires significant experimental effort.To limit the experimental effort, VLE measurements are frequently conducted by synthetic methods which employ samples of known composition and avoid complex analytics and sampling issues.In contrast, analytical methods provide independent information on phase compositions, commonly based on sampling and large amounts of substance. In the first part of this work, we employ a synthetic method, the well-established Cailletet setup, to characterize the high pressure VLE of two promising binary biofuel blends.The Cailletet method serves as a state of the art reference method that enables collecting data of remarkable accuracy.However, extensive infrastructure is needed. In the second part, to avoid extensive infrastructure and overcome limitations of previous methods, we develop a novel analytical milliliter-scale setup for the noninvasive and efficient characterization of VLE: RAMSPEQU (Raman Spectroscopic Phase Equilibrium Characterization).The novel setup saves substance and rapidly characterizes VLE.Sampling and its associated errors are avoided by analyzing phase compositions using Raman spectroscopy.Thereby, volumes of less than 3 ml are sufficient for reliable phase equilibrium measurements.To enable rapid data generation and save substance, we design an integrated workow combining Raman signal calibration and VLE measurement.As a result, RAMSPEQU gives access to up to 15 pT xy-data sets per workday.RAMSPEQU is successfully validated against pure component and binary VLE data from literature. However, mixtures with only two components rarely depict real industrial applications.As the number of experiments increases strongly with a rising number of components, the efficient RAMSPEQU setup seems particularly suited for multicomponent systems.In the third part of this work, we employ the RAMSPEQU setup for the characterization of a quaternary system and its binary subsystems. 22 ml and 105 ml of the binary and quaternary mixtures are sufficient for an extensive VLE characterization. The RAMSPEQU setup and its integrated workow enable the characterization of multicomponent VLE while saving significant amounts of substance and laboratory time.
Price: 43.99 £ | Shipping*: 0.00 £ -
Nanotechnology-Enhanced Solid Materials : Design, Synthesis, Properties, Applications, and Perspectives
This new volume highlights the emergence and rapid development of nanotechnology-enhanced solid materials and the ways they have impacted almost every aspect of nanoengineering.The chapters explore the role of nanomaterials in industries in diverse applications, such as for insulation and reinforcement of composite materials.The book focuses on the design, synthesis, and properties of solid materials, presenting updated, practical, and systematic knowledge on the modification of nanomaterials.The topics include photovoltaic applications of solid carbons, mesoporous silica nanomaterials, smart biopolymer composites and polymer solids, graphene oxide as an emerging solid-based nanocomposite material, steady-state creep deformation, and more.
Price: 139.00 £ | Shipping*: 0.00 £ -
Nanotechnology for Hydrogen Production and Storage : Nanostructured Materials and Interfaces
Nanotechnology for Hydrogen Production and Storage: Nanostructured Materials and Interfaces presents an evaluation of the various nano-based systems for hydrogen generation and storage.With a focus on challenges and recent developments, the book analyzes nanomaterials with the potential to boost hydrogen production and improve storage.It assesses the potential improvements to industrially important hydrogen production technologies by way of better surface-interface control through nanostructures of strategical composites of metal oxides, metal chalcogenides, plasmonic metals, conducting polymers, carbonaceous materials, and bio-interfaces with different types of algae and bacteria. In addition, the efficiency of various photochemical water splitting processes to generate renewable hydrogen energy are reviewed, with a focus on natural water splitting via photosynthesis, and the use of various metallic and non-metallic nanomaterials in anthropogenic/artificial water splitting processes is analyzed.Finally, the potential of nanomaterials in enhancing hydrogen generation in dark- and photo-fermentative organisms is explored, along with various nano-based systems for hydrogen generation and associated significant challenges and advances in biohydrogen research and development.
Price: 155.00 £ | Shipping*: 0.00 £
-
Is rapeseed oil like cooking oil?
Yes, rapeseed oil is a type of cooking oil. It is commonly used for frying, baking, and salad dressings. It has a mild flavor and a high smoke point, making it suitable for a variety of cooking methods. Additionally, rapeseed oil is high in monounsaturated fats and low in saturated fats, making it a healthier option for cooking.
-
Is sunflower oil a vegetable oil?
Yes, sunflower oil is a type of vegetable oil. It is extracted from the seeds of the sunflower plant and is commonly used for cooking and frying. Like other vegetable oils, sunflower oil is high in unsaturated fats and low in saturated fats, making it a healthier option for cooking.
-
Which oil is better for hair, argan oil or coconut oil?
Both argan oil and coconut oil have their own unique benefits for hair. Argan oil is rich in vitamin E and fatty acids, making it great for moisturizing and nourishing the hair, as well as promoting shine and reducing frizz. On the other hand, coconut oil has a high affinity for hair proteins, which allows it to penetrate the hair shaft and strengthen it from within. It also has antimicrobial properties that can help with scalp health. Ultimately, the choice between argan oil and coconut oil depends on individual hair needs and preferences.
-
Do you use rapeseed oil, sunflower oil, or olive oil for frying?
I recommend using rapeseed oil or sunflower oil for frying, as they have higher smoke points compared to olive oil. This means they can withstand higher temperatures without burning, making them more suitable for frying. Additionally, rapeseed oil and sunflower oil have neutral flavors that won't overpower the taste of the food being fried.
* All prices are inclusive of VAT and, if applicable, plus shipping costs. The offer information is based on the details provided by the respective shop and is updated through automated processes. Real-time updates do not occur, so deviations can occur in individual cases.