Buy raman-scattering.eu ?

Products related to License:


  • Raman Scattering on Emerging Semiconductors and Oxides
    Raman Scattering on Emerging Semiconductors and Oxides

    Raman Scattering on Emerging Semiconductors and Oxides presents Raman scattering studies.It describes the key fundamental elements in applying Raman spectroscopies to various semiconductors and oxides without complicated and deep Raman theories. Across nine chapters, it covers:• SiC and IV-IV semiconductors,• III-GaN and nitride semiconductors,• III-V and II-VI semiconductors,• ZnO-based and GaO-based semiconducting oxides,• Graphene, ferroelectric oxides, and other emerging materials,• Wide-bandgap semiconductors of SiC, GaN, and ZnO, and• Ultra-wide gap semiconductors of AlN, Ga2O3, and graphene. Key achievements from the author and collaborators in the above fields are referred to and cited with typical Raman spectral graphs and analyses.Written for engineers, scientists, and academics, this comprehensive book will be fundamental for newcomers in Raman spectroscopy. Zhe Chuan Feng has had an impressive career spanning many years of important work in engineering and tech, including as a professor at the Graduate Institute of Photonics & Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei; establishing the Science Exploring Lab; joining Kennesaw State University as an adjunct professor, part-time; and at the Department of Electrical and Computer Engineering, Southern Polytechnic College of Engineering and Engineering Technology.Currently, he is focusing on materials research for LED, III-nitrides, SiC, ZnO, other semiconductors/oxides, and nanostructures and has devoted time to materials research and growth of III-V and II-VI compounds, LED, III nitrides, SiC, ZnO, GaO, and other semiconductors/oxides. Professor Feng has also edited and published multiple review books in his field, alongside authoring scientific journal papers and conference/proceeding papers.He has organized symposiums and been an invited speaker at different international conferences and universities.He has also served as a guest editor for special journal issues.

    Price: 44.99 £ | Shipping*: 0.00 £
  • Applied Raman Spectroscopy : Concepts, Instrumentation, Chemometrics, and Life Science Applications
    Applied Raman Spectroscopy : Concepts, Instrumentation, Chemometrics, and Life Science Applications

    Applied Raman Spectroscopy: Concepts, Instrumentation, Chemometrics, and Life Science Applications synthesizes recent developments in the field, providing an updated overview.The book focuses on the modern concepts of Raman spectroscopy techniques, recent technological innovations, data analysis using chemometric methods, along with the latest examples of life science applications relevant in academia and industries.It will be beneficial to researchers from various branches of science and technology, and it will point them to modern techniques coupled with data analysis methods.In addition, it will help instruct new readers on Raman spectroscopy and hyphenated Raman spectroscopic techniques. The book is primarily written for analytical and physical chemistry students and researchers at a more advanced level who require a broad introductory overview of the applications of Raman spectroscopy, as well as those working in applied industry and clinical laboratories.Students, researchers, and industry workers in related fields, including X-ray and materials science, agriculture, botany, molecular biology and biotechnology, mineralogy, and environmental science will also find it very useful.

    Price: 155.00 £ | Shipping*: 0.00 £
  • Magneto-Optics and Spectroscopy of Antiferromagnets
    Magneto-Optics and Spectroscopy of Antiferromagnets

    Certain magnetic materials have optical properties that make them attractive for a wide variety of applications such as optical switches.This book describes the physics of one class of such magnetooptic materials, the insulating antiferromagnets.The authors summarize recent results concerning the structure, optical properties, spectroscopy, and magnetooptical properties of these materials.In particular, they consider magnetic phase transitions, symmetry effects, the linear magnetooptical effect, magnons, spectroscopic study of spin waves, photoinduced magnetic effects, and the effects of impurities.

    Price: 89.99 £ | Shipping*: 0.00 £
  • HPE R2B49AAE software license/upgrade 1 license(s) Electronic License
    HPE R2B49AAE software license/upgrade 1 license(s) Electronic License

    HPE R2B49AAE software license/upgrade 1 license(s) Electronic License Delivery (ELD) 2 year(s)

    Price: 2407.49 £ | Shipping*: 0.00 £
  • Where has photonics gone?

    Photonics has advanced and expanded into various industries and applications, including telecommunications, healthcare, manufacturing, and defense. It has enabled the development of faster and more efficient communication systems, medical imaging technologies, high-precision manufacturing tools, and advanced military equipment. Photonics has also made significant contributions to renewable energy technologies, such as solar cells and LED lighting. Overall, photonics has become an integral part of modern technology and continues to drive innovation in a wide range of fields.

  • Do you need a packaging license if you use used packaging materials?

    It depends on the specific regulations in your location. In some places, using used packaging materials may still require a packaging license because the materials need to meet certain standards for safety and environmental impact. It's important to research the regulations in your area and consult with local authorities to determine if a packaging license is required for using used packaging materials.

  • What is better: moped license, scooter license, or 125cc license?

    The answer to this question depends on individual preferences and needs. A moped license allows you to operate a vehicle with an engine size of 50cc or less, which is typically limited in speed and power. A scooter license typically allows you to operate a vehicle with an engine size between 50cc and 150cc, offering more power and speed than a moped. A 125cc license allows you to operate a vehicle with an engine size of up to 125cc, providing even more power and speed. Ultimately, the best option would depend on factors such as desired speed, power, and intended use of the vehicle.

  • How advanced is nanotechnology?

    Nanotechnology is a rapidly advancing field that involves manipulating materials at the nanoscale, which is on the order of billionths of a meter. It has already led to significant advancements in various industries, including medicine, electronics, and materials science. Researchers are continually developing new techniques and applications for nanotechnology, such as targeted drug delivery, nanoelectronics, and nanomaterials with unique properties. While nanotechnology is still in its early stages, it holds great promise for revolutionizing many aspects of our lives in the future.

Similar search terms for License:


  • HPE R0G83AAE software license/upgrade 1 license(s) Electronic License
    HPE R0G83AAE software license/upgrade 1 license(s) Electronic License

    HPE R0G83AAE software license/upgrade 1 license(s) Electronic License Delivery (ELD) 3 year(s)

    Price: 359.51 £ | Shipping*: 0.00 £
  • HPE R0W35AAE software license/upgrade 1 license(s) Electronic License
    HPE R0W35AAE software license/upgrade 1 license(s) Electronic License

    HPE R0W35AAE software license/upgrade 1 license(s) Electronic License Delivery (ELD) 5 year(s)

    Price: 231.26 £ | Shipping*: 0.00 £
  • Microsoft 2BA72571 1 license(s) License
    Microsoft 2BA72571 1 license(s) License

    Microsoft 2BA72571 1 license(s) License

    Price: 16.69 £ | Shipping*: 0.00 £
  • Microsoft 2C883339 1 license(s) License
    Microsoft 2C883339 1 license(s) License

    Microsoft 2C883339 1 license(s) License

    Price: 30.44 £ | Shipping*: 0.00 £
  • What is NMR spectroscopy?

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique used to study the structure and dynamics of molecules. It provides detailed information about the chemical environment, connectivity, and conformation of atoms within a molecule. By measuring the interactions of atomic nuclei with a magnetic field, NMR spectroscopy can elucidate the molecular structure of organic compounds, proteins, and other biomolecules. This technique is widely used in chemistry, biochemistry, and structural biology for research and drug discovery purposes.

  • How is spectroscopy applied?

    Spectroscopy is applied in various fields such as chemistry, physics, astronomy, and environmental science. In chemistry, it is used to identify and analyze the chemical composition of substances. In physics, it is used to study the interaction of electromagnetic radiation with matter. In astronomy, it is used to determine the composition, temperature, and motion of celestial objects. In environmental science, it is used to monitor air and water quality by analyzing the presence of pollutants. Overall, spectroscopy is a versatile tool for analyzing the properties of different materials and substances.

  • Is it possible to create new materials through lower dimensional levels by using femtotechnology instead of nanotechnology?

    Femtotechnology operates at the scale of femtometers (10^-15 meters), which is smaller than the scale of nanotechnology (10^-9 meters). At this scale, it is theoretically possible to manipulate individual atomic nuclei and electrons to create entirely new materials with unique properties. By harnessing the power of femtotechnology, scientists may be able to engineer materials with unprecedented strength, conductivity, and other desirable characteristics. However, femtotechnology is still largely theoretical and has not yet been realized in practical applications, so its potential for creating new materials through lower dimensional levels remains speculative.

  • Why is Rutherford's scattering experiment called a scattering experiment at all?

    Rutherford's experiment is called a scattering experiment because it involved firing alpha particles at a thin gold foil and observing how they scattered after hitting the foil. The term "scattering" refers to the process of particles being deflected from their original path as a result of collisions with the atoms in the foil. By analyzing the pattern of scattering, Rutherford was able to deduce the structure of the atom and propose the existence of a dense, positively charged nucleus at its center. This experiment was crucial in advancing our understanding of atomic structure and the behavior of subatomic particles.

* All prices are inclusive of VAT and, if applicable, plus shipping costs. The offer information is based on the details provided by the respective shop and is updated through automated processes. Real-time updates do not occur, so deviations can occur in individual cases.